Abstract

Due to the apparent similarity of fungal and mammalian metabolic pathways, the number of established antifungal targets is low, and the identification of novel ones is highly desirable. The results of our studies, presented in this work, indicate that the fungal biosynthetic pathway of L-methionine, an amino acid essential for humans, seems to be an attractive perspective. The MET2 gene from Candida albicans encoding L-homoserine O-acetyltransferase (CaMet2p), an enzyme catalyzing the first step in that pathway, was cloned and expressed as the native or the oligo-His-tagged fusion protein in Escherichia coli. The recombinant enzymes were purified and characterized for their basic molecular properties and substrate specificities. The purified MET2 gene product revealed the appropriate activity, catalyzed the conversion of L-homoserine (L-Hom) to O-acetyl-L-homoserine (OALH), and exhibited differential sensitivity to several L-Hom or OALH analogues, including penicillamine. Surprisingly, both penicillamine enantiomers (L- and D-Pen) displayed comparable inhibitory effects. The results of the docking of L- and D-Pen to the model of CaMet2p confirmed that both enantiomeric forms of the inhibitor are able to bind to the catalytic site of the enzyme with similar affinities and a similar binding mode. The sensitivity of some fungal cells to L-Pen, depending on the presence or absence of L-Met in the medium, clearly indicate Met2p targeting. Moreover, C. glabrata clinical strains that are resistant to fluconazole displayed a similar susceptibility to L-Pen as the wild-type strains. Our results prove the potential usefulness of Met2p as a molecular target for antifungal chemotherapy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.