Abstract

Nonheme chloroperoxidase (CPO-P) of Pseudomonas pyrrocinia catalyzes the oxidation of alkyl acids to peracids by hydrogen peroxide. Alkyl peracids possess potent antifungal activity as found with peracetate: 50% killing (LD(50)) of Aspergillus flavus occurred at 25 microM compared to 3.0 mM for the hydrogen peroxide substrate. To evaluate whether CPO-P could protect plants from fungal infection, tobacco was transformed with a gene for CPO-P from P. pyrrocinia and assayed for antifungal activity. Leaf extracts from transformed plants inhibited growth of A. flavus by up to 100%, and levels of inhibition were quantitatively correlated to the amounts of CPO-P activity expressed in leaves. To clarify if the peroxidative activity of CPO-P could be the basis for the increased resistance, the antifungal activity of the purified enzyme was investigated. The LD(50) of hydrogen peroxide combined with CPO-P occurred at 2.0 mM against A. flavus. Because this value was too small to account for the enhanced antifungal activity of transgenic plants, the kinetics of the enzyme reaction was examined and it was found that the concentration of hydrogen peroxide needed for enzyme saturation (K(m) = 5.9 mM) was already lethal. Thus, the peroxidative activity of CPO-P is not the basis for antifungal activity or enhanced resistance in transgenic plants expressing the gene.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.