Abstract

This study aimed to investigate the antifungal activity of hydroalcoholic extract from Smilacina japonica A. Gray (SJA) against different fungi. The minimum inhibitory concentration (MIC) for SJA was determined by the broth microdilution method. The antifungal effects of SJA against Candida albicans were further confirmed by cell growth test and time-kill curve test. The effects of SJA on the fungal morphology and ultrastructure were also evaluated. SJA has a broad-spectrum antifungal activity. The MICs of SJA against different fungi, including fluconazole-sensitive and -resistant Candida albicans, other Candida species, and Cryptococcus neoformans, ranged from 208 μg/ml to 1665 μg/ml. Furthermore, SJA displayed fungicidal activity against varied fungi and obviously inhibited the hyphal growth of fungi. The mechanism study revealed that the antifungal activity of SJA might be associated with its effect on the cell morphology and ultrastructure.

Highlights

  • With increased patients with HIV infection, receiving different immunosuppressant treatments, antineoplastic chemotherapy, transplant recipients, or using catheters or other intravenous devices, invasive fungal infections are severe infections and constantly rising in the world [1,2,3]

  • Common agents used in clinic to treat invasive fungal infections are azoles, echinocandins, and amphotericin B

  • To further visualize the activity of Smilacina japonica A. Gray (SJA) against these fungi, we evaluated the growth of fungi after incubation with different concentrations of SJA for 24 h and 48 h

Read more

Summary

Introduction

With increased patients with HIV infection, receiving different immunosuppressant treatments, antineoplastic chemotherapy, transplant recipients, or using catheters or other intravenous devices, invasive fungal infections are severe infections and constantly rising in the world [1,2,3]. Invasive candidiasis remains the most frequent mycosis and is often cited as the fourth most common cause of bloodstream infections with significant morbidity and mortality [4]. Common agents used in clinic to treat invasive fungal infections are azoles (e.g., fluconazole, itraconazole, voriconazole), echinocandins (e.g., caspofungin, anidulafungin, micafungin), and amphotericin B. Progressive increase in exposing to azoles and echinocandins among Candida isolates commonly leads to resistant strains [5, 6]. Some fungi are intrinsically resistant to certain antifungals, such as Candida krusei (to fluconazole) and Cryptococcus spp (to the echinocandins). Drug resistance in fungi worsened the already significant mortality associated with the invasive fungal infections [7]

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call