Abstract

Application of synthetic fungicides in agricultural commodities has been restricted due to development of fungicide resistance fungi and deleterious impact on environment and health of farm animals and humans. Hence, there is an urge for development of mycobiocides, and the present study was undertaken to determine the antifungal activity of Cymbopogon martinii essential oil (CMEO) on post-harvest pathogen Fusarium graminearum. The CMEO was extracted by hydrodistillation and GC-MS chemical profile revealed the presence of 46 compounds and abundant was geraniol (19.06%). The minimum inhibitory concentration and minimum fungicidal concentration of CMEO were determined as 421.7 ± 27.14 and 618.3 ± 79.35 ppm, respectively. The scanning electron microscopic observation of CMEO exposed macroconidia was exhibited a detrimental morphology with vesicles, craters, protuberance, and rough surfaces related to control fungi. The CMEO induced the death of fungi through elevating intracellular reactive oxygen species and lipid peroxidation, and depleting ergosterol content. Regrettably, essential oils are highly volatile and become unstable and lose their biological features on exposure to light, heat, pH, moisture, and oxygen. To overcome these issues, chitosan encapsulated CMEO nanoparticles (Ce-CMEO-NPs) were prepared. The synthesized Ce-CMEO-NPs have spherical morphology with Zeta potential of 39.3–37.2 mV and their corresponding size was found in range of 455–480 nm. The Fourier transform infrared analysis confirmed that bio-active constituents of CMEO were well stabilized due to chitosan conjugation and successfully formed Ce-CMEO-NPs. The in vitro release assay observed that the release of CMEO is stabilized due to the complex formation with chitosan and thereby, increases the lifetime antifungal activity of CMEO by gradual release of antifungal constituents of Ce-CMEO-NPs. In conclusion, antifungal and antimycotoxin activities of CMEO and Ce-CMEO-NPs against F. graminearum were assessed in maize grains under laboratory conditions over a storage period of 28 days. Interestingly, Ce-CMEO-NPs were presented efficient and enhanced antifungal and antimycotoxin activities related to CMEO, and it could be due to perseverance of antifungal activity by controlled release of antifungal constituents from Ce-CMEO-NPs. The study concluded that Ce-CMEO-NPs could be highly appropriate as mycobiocides in safeguarding the agricultural commodities during storage period in agricultural and food industries.

Highlights

  • Fusarium graminearum [telemorph Gibberella zeae (Schwein)] is a sporadic plant pathogen, causes Fusarium head blight (FHB) in barley and wheat, stalk rot and Gibberella ear rot in maize, and one of the utmost liable for economic setback in the agriculture and food industry worldwide (Dweba et al, 2017)

  • The yield of C. martinii essential oil (CMEO) was calculated from the dry weight of plant material employed for extraction of oil and it was found as 1.80%

  • The antifungal activity of CMEO on F. graminearum was determined by the micro-well dilution method, and minimum inhibitory concentration (MIC) and minimum fungicidal concentration (MFC) values were observed at 421.7 ± 27.14 ppm and 618.3 ± 79.35 ppm, respectively

Read more

Summary

Introduction

Fusarium graminearum [telemorph Gibberella zeae (Schwein)] is a sporadic plant pathogen, causes Fusarium head blight (FHB) in barley and wheat, stalk rot and Gibberella ear rot in maize, and one of the utmost liable for economic setback in the agriculture and food industry worldwide (Dweba et al, 2017). International Agency on Research and Cancer (IARC) has confirmed the carcinogenicity of Fusarium mycotoxins and classified into group 3 agents (IARC, 1999). Concerning these worries, the European Union (EU), Joint FAO/WHO Expert Committee on Food Additives (JECFA), and various nations have recommended stringent regulatory levels for Fusarium mycotoxins in agricultural and food products (JECFA, 2000; European Commission, 2007). Beccari et al (2018) have detected the higher incidence of FHB in Durum wheat samples of central Italy and reported that 22% fungal species were F. graminearum. In Mediterranean countries of Europe, Gorczyca et al (2018) have detected yield loss and contamination of mycotoxins in Durum wheat owed to FHB incidence.

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call