Abstract

As salt stress has a negative impact on plant growth and crop yield, it is very important to identify and develop any available biotechnology which can improve the salt tolerance of plants. Inoculation with plant-growth-promoting rhizobacteria (PGPR) is a proven environmentally friendly biotechnological resource for increasing the salt stress tolerance of plants and has a potential in-field application. In addition, bacterial volatile organic compounds (mVOCs) are signal molecules that may have beneficial roles in the soil-plant-microbiome ecosystem. We investigated the effects of mVOCs emitted by Pseudomona putida SJ46 and SJ04 on Mentha piperita grown under different levels of NaCl stress by evaluating their growth-promoting potential and capacity to increase salt tolerance effects. Furthermore, we evaluated under control and salt stress conditions the biocontrol ability of VOCs emitted by both these strains to inhibit the growth of Alternaria alternata and Sclerotium rolfsii. The VOCs emitted by both strains under control conditions did not lead to an significant improvement in peppermint growth. However, under salt stress conditions (75 or 100 mM NaCl), an amelioration of its physiological status was observed, with this effect being greater at 100 mM NaCl. This led to an enhancement of the number of leaves and nodes and, increased the shoot fresh and root dry weight by approximately twice in relation to control stressed plants. Moreover, the VOCs released by the two bacteria grown in control or saline media showed a significant reduction in the mycelial growth of A. alternata. In contrast, S. rolfsii growth was reduced 40% by the mVOCs released only under control conditions, with no effects being observed under salt stress. We also explored the composition of the bacterial volatile profiles by means of a solid-phase microextraction/gas chromatography-mass spectrometry (SPME/GC-MS) analysis. From the headspace of SJ46, three VOCs were identified: n-octanol, decane and tetradecane. The emission of SJ04 had the same chromatographic profile, with the addition of two more compounds: 1-(N-phenyl carbamyl)-2-morpholino cyclohexene and tridecane. Only compounds that were not present in the headspace of the control groups were recorded. The salt stress conditions where the bacteria were grown did not qualitatively modify the mVOC emissions. Taken together, our results suggest that plant-associated rhizobacterial VOCs play a potentially important role in modulating plant salt tolerance and reducing fungal growth. Thus, biological resources represent novel tools for counteracting the deleterious effects of salt stress and have the potential to be exploited in sustainable agriculture. Nevertheless, future studies are necessary to investigate technological improvements for bacterial VOC application under greenhouse and open field conditions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.