Abstract

In order to develop a novel biofungicide, the antifungal activity and action mode of cuminic acid from the seed of Cuminum cyminum L. against Fusarium oxysporum f. sp. niveum (FON) on watermelon was determined systematically. In this study, the median effective concentration (EC50) value for cuminic acid in inhibiting mycelial growth of FON was 22.53 μg/mL. After treatment with cuminic acid, the mycelial morphology was seriously influenced; cell membrane permeability and glycerol content were increased markedly, but pigment and mycotoxin (mainly fusaric acid) were significantly decreased. Synthesis genes of bikaverin (Bike1, Bike2 and Bike3) and fusaric acid (FUB1, FUB2, FUB3 and FUB4) both were downregulated compared with the control, as confirmed by quantitative RT-PCR. In greenhouse experiments, cuminic acid at all concentrations displayed significant bioactivities against FON. Importantly, significant enhancement of activities of SOD, POD, CAT and decrease of MDA content were observed after in vivo cuminic acid treatment on watermelon leaves. These indicated that cuminic acid not only showed high antifungal activity, but also could enhance the self-defense system of the host plant. Above all, cuminic acid showed the potential as a biofungicide to control FON.

Highlights

  • Watermelon is one of the most important fruits worldwide

  • Watermelon fusarium wilt caused by Fusarium oxysporum f. sp. niveum (FON) is a destructive soil-borne disease leading to serious economic losses and limiting watermelon production throughout the world [2]

  • This study was focused on the biochemistry and physiology alterations in Fusarium oxysporum f. sp. niveum mediated by cumunic acid, and confirms that this chemical has a value for development and utilization as a potential biofungicide

Read more

Summary

Introduction

Watermelon is one of the most important fruits worldwide. In China, watermelon cultivation has been increasing year by year due to its comparatively high economic value and increasing consumption, but it is susceptible to fusarium wilt disease in continuous monocropping cultivation systems [1].Watermelon fusarium wilt caused by Fusarium oxysporum f. sp. niveum (FON) is a destructive soil-borne disease leading to serious economic losses and limiting watermelon production throughout the world [2].Importantly, FON is difficult to eliminate from soil. In China, watermelon cultivation has been increasing year by year due to its comparatively high economic value and increasing consumption, but it is susceptible to fusarium wilt disease in continuous monocropping cultivation systems [1]. Watermelon fusarium wilt caused by Fusarium oxysporum f. Niveum (FON) is a destructive soil-borne disease leading to serious economic losses and limiting watermelon production throughout the world [2]. More than 50% of Fusarium species are toxigenic and produce harmful secondary metabolites (SM), such as the pigments fusarubins and bikaverin [3], as well as the mycotoxins, fumonisins, fusarins [4], and fusaric acid [5,6]. In the progression of the infection, fusarium species damage host plants through intrusion of hyphae into host vascular system, secretion of hydrolytic enzymes and mycotoxins which

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call