Abstract

Wearable flexible sensors based on conductive hydrogels have received extensive attention in the fields of electronic skin and smart monitoring. However, conductive hydrogels contain a large amount of water, which greatly affects their performances in harsh environments. It is therefore necessary to prepare hydrogel sensors that are stable at low temperatures. Herein, metal ions (MgCl2) and ethylene glycol (EG) were combined with polyvinyl alcohol (PVA) to obtain a conductive PVA/EG hydrogel with tensile strength and elongation at break of 1.1 MPa and 442.3 %, respectively, which could withstand >6000-fold its own weight. The binary solvent system composed of water and EG contributed to the excellent anti-freezing properties and long-term storage (>1 week), flexibility, and stability of the hydrogel even at −20 °C. The wearable PVA/EG hydrogel as a flexible sensor possessed desirable sensing performances with a competitive GF value of 0.725 and fatigue resistance (50 cycles) when used to monitor various human motions and physiological signals. Overall, this hydrogel sensor shows strong potential for application in the fields of human motion monitoring, written information sensing, and information encryption and transmission.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.