Abstract

Cell-based therapy is a promising technology for intractable diseases and health care applications, in which cryopreservation has become an essential procedure to realize the production of therapeutic cells. Ice recrystallization is the major factor that affects the post-thaw viability of cells. As a typical series of biomacromolecules with ice recrystallization inhibition (IRI) activity, antifreeze proteins (AFPs) have been employed in cell cryopreservation. Meanwhile, synthesized materials with IRI activity have emerged in the name of biomimetics of AFPs to expand their availability and practicality. However, fabrication of AFPs mimetics is in a chaotic period. There remains little commonality among different AFPs mimetics, then it is difficult to set guidelines on their design. With no doubt, a comprehensive understanding on the antifreezing mechanism of AFPs in molecular level will enable us to rebuild the function of AFPs, and provide convenience to clarify the relationship between structure and function of these early stage biomimetics. In this review, we would discuss those previously reported biomimetics to summarize their structure characteristics concerning the IRI activity and attempt to develop a roadmap for guiding the design of novel AFPs mimetics.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call