Abstract

Exploring a novel natural cryoprotectant and understanding its antifreeze mechanism allows the rational design of future sustainable antifreeze analogues. In this study, various antifreeze polysaccharides were isolated from wheat bran, and the antifreeze activity was comparatively studied in relation to the molecular structure. The antifreeze mechanism was further revealed based on the interactions of polysaccharides and water molecules through dynamic simulation analysis. The antifreeze polysaccharides showed distinct ice recrystallization inhibition activity, and structural analysis suggested that the polysaccharides were arabinoxylan, featuring a xylan backbone with a majority of Araf and minor fractions of Manp, Galp, and Glcp involved in the side chain. The antifreeze arabinoxylan, characterized by lower molecular weight, less branching, and more flexible conformation, could weaken the hydrogen bonding of the surrounding water molecules more evidently, thus retarding the transformation of water molecules into the ordered ice structure.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.