Abstract

An identified class of antifreeze, a xylomannan-based thermal hysteresis (TH)-producing glycolipid, has been discovered from diverse taxa, including plants, insects, and amphibians. We isolated xylomannan from the mycelium and fruit body of the basidiomycete Flammulina velutipes using successive hot extraction with water, 2% and 25% aqueous KOH, and gel filtration chromatography. The xylomannan from the fruit body had a recrystallization inhibiting (RI) activity (RI=0.44) at 0.5 mg/mL. The dried weight yield of the fruit body (7.7×10(-2)%, w/w) was higher than that of the mycelium. Although the purified xylomannan from both soures were composed of mannose and xylose in a 2 : 1 molar ratio, the molecular weight of the xylomannan from the mycelium and fruit body was 320,000 and 240,000, respectively. The RI activity of mycelial xylomannan was higher than that from the fruit body (RI=0.57) at 45 µg/mL. Although this RI activity was able to remain constant after exposure to various conditions, we confirmed that the decrease of RI activity was stimulated by the decrease of molecular weight that was caused by heating during the alkaline condition. The survival rate of the CHO cells at -20℃ for two days increased to 97% due to the addition of 20 µg/mL of purified xylomannan. This was the first report to indicate that xylomannan from the mycelium of Flammulina velutipes had a high level of ice recrystallization inhibiting activity like antifreeze proteins from plants and had rhe potential to become a new material for cell storage.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call