Abstract

Large quantities of organic ion-exchange resins are used worldwide for water decontamination and polishing. Fouling by microorganisms and decomposition products of natural organic matter severely limits the lifetime of these resins. Much research has thus been invested in polymer-based antifouling coatings. In the present study, poly(4-styrenesulfonate) (PSS) and a co-polymer of PSS and a zwitterionic group were used to spontaneously coat commercial Dowex 1X8 anion-exchange resin. UV-visible spectroscopy provided a precise measure of the kinetics and amount of PSS sorbed onto or into resin beads. When challenged with Chlamydomonas reinhardtii algae, uncoated resin was rapidly fouled by algae. Coating the resin with either the homopolymer of PSS or the co-polymer with zwitterion eliminated fouling. Using narrow- and wide-molecular-weight distribution PSS, a cutoff molecular weight of about 240 repeat units was found, above which PSS was unable to diffuse into the resin. Thus, only one monolayer of added PSS was sufficient to confer a highly desirable antifouling property on this resin while consuming less than 0.1% of the exchanger capacity. Radioactive sulfate ions were used to probe the kinetics of (self)exchange, which were virtually unaffected by the PSS coating. This resin treatment is a fast, ultra-low-cost step for potentially enhancing the lifetime of ion exchangers.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.