Abstract
A new sulfonated aromatic diamine monomer, potassium 2,5-bis(4-aminophenoxy)benzenesulfonate (BAPBS), was synthesized and employed to develop a series of thin-film composite (TFC) nanofiltration membranes with trimesoyl chloride (TMC) on a polysulfone (PSF) substrate by an interfacial polymerization (IP) technique. The TFC membrane performed a high water flux of 72.8 L m–2 h–1 and a rejection of 92.5% to Na2SO4 at 0.6 MPa. The surface hydrophilicity of the as-prepared sulfonated polyamide (SPA) membrane was greatly improved by the introduction of sulfonic acid groups, as confirmed by the much reduced contact angle value. Moreover, the membrane also exhibited good antifouling ability with water flux recovery ratio (FRR) and total flux decline ratio (DRt) of about 88% and 18%, respectively. Molecular dynamics simulation was investigated to obtain an in-depth understanding of the transport behaviors of water molecules through the SPA polymers. The results clearly illustrated that the diffusion coefficient of...
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.