Abstract
Let M be a perfect matching of a graph G. The smallest number of edges whose removal to make M as the unique perfect matching in the resulting subgraph is called the anti-forcing number of M. The anti-forcing spectrum of G is the set of anti-forcing numbers of all perfect matchings in G, denoted by $$\hbox {Spec}_{af}(G)$$Specaf(G). In this paper, we show that any finite set of positive integers can be the anti-forcing spectrum of a graph. We present two classes of hexagonal systems whose anti-forcing spectra are integer intervals. Finally, we show that determining the anti-forcing number of a perfect matching of a bipartite graph with maximum degree four is a NP-complete problem.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.