Abstract

This study was designed to investigate the antifertility effectiveness of a novel copper-containing intrauterine device material containing a composite of micro-copper (Cu), low-density polyethylene (LDPE), and methyl vinyl silicone rubber (MVQ) and its effects on the endometrial environment in rats. The contraceptive effectiveness was examined 12 days after pregnancy. The pathological changes; factors associated with bleeding, pain, and inflammation in the endometrium; and the surface condition of the implants were investigated after insertion for 90 days. Furthermore, the release rate of copper ions in simulated uterine solution (SUS) was investigated for 270 days. The contraceptive effectiveness was 100% in both the bulk Cu and micro-Cu/LDPE/MVQ groups, and that in the LDPE/MVQ group was 30%. On day 90 after insertion, histopathological observation and the ultrastructural changes in the endometrium showed that the damage caused by bulk Cu was much more severe than that caused by the Cu/LDPE/MVQ microcomposite and that the surface of the latter was much smoother than that of the former. Furthermore, compared with the sham-operated control group, the concentrations of tissue plasminogen activator and prostaglandin E2 were significantly increased 90 days after insertion in all of the experimental groups except for the LDPE/MVQ group (P < 0.05), and the parameters in the Cu/LDPE/MVQ group were significantly lower than those in the Cu group (P < 0.05). In addition, the expression levels of matrix metalloproteinase 9, metalloproteinase 1 tissue inhibitor, plasminogen inhibitor 1, CD34, vascular endothelial growth factor, substance P, and substance P receptor in the endometrium in all of the experimental groups were significantly lower than those in the Cu group 90 days after insertion (P < 0.05). The results of this study indicate that micro-Cu/LDPE/MVQ exhibits satisfactory contraceptive efficacy and causes fewer side effects than Cu.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.