Abstract

The critical theory of the onset of antiferromagnetism in metals, with concomitant Fermi surface reconstruction, has recently been shown to be strongly coupled in two spatial dimensions. The onset of unconventional superconductivity near this critical point is reviewed: it involves a subtle interplay between the breakdown of fermionic quasiparticle excitations on the Fermi surface and the strong pairing glue provided by the antiferromagnetic fluctuations. The net result is a logarithm-squared enhancement of the pairing vertex for generic Fermi surfaces, with a universal dimensionless coefficient independent of the strength of interactions, which is expected to lead to superconductivity at the scale of the Fermi energy. We also discuss the possibility that the antiferromagnetic critical point can be replaced by an intermediate ‘fractionalized Fermi liquid’ phase, in which there is Fermi surface reconstruction but no long-range antiferromagnetic order. We discuss the relevance of this phase to the underdoped cuprates and the heavy fermion materials.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call