Abstract

We derive critical field H_c2 equations for antiferromagnetic \textit{s}-wave, d_{x^2-y^2}-wave, and d_{xy}-wave superconductors with effective mass anisotropy in three dimensions, where we take into account (i) the Jaccarino-Peter mechanism of magnetic-field-induced superconductivity (FISC) at high fields, (ii) an extended Jaccarino-Peter mechanism that reduces the Pauli paramagnetic pair-breaking effect at low fields where superconductivity and an antiferromagnetic long-range order with a canted spin structure coexist, and (iii) the Fulde-Ferrell-Larkin-Ovchinnikov (FFLO or LOFF) state. As an example, experimental phase diagrams observed in organic superconductor kappa-(BETS)_2FeBr_4 are theoretically reproduced. In particular, the upper critical field of low-field superconductivity is well reproduced without any additional fitting parameter other than those determined from the critical field curves of the FISC at high fields. Therefore, the extended Jaccarino-Peter mechanism seems to occur actually in the present compound. It is predicted that the FFLO state does not occur in the FISC at high fields in contrast to the compound lambda-(BETS)_2FeCl_4, but it may occur in low-field superconductivity for s-wave and d_{x^2-y^2}-wave pairings. We also briefly discuss a possibility of compounds that exhibit unconventional behaviors of upper critical fields.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.