Abstract

We have experimentally observed the emergence of spontaneous antiferromagnetic spatial order in a sodium spinor Bose-Einstein condensate that was quenched through a magnetic phase transition. For negative values of the quadratic Zeeman shift, a gas initially prepared in the F=1, m(F)=0 state collapsed into a dynamically evolving superposition of all three spin projections, m(F)=0, ±1. The quench gave rise to rich, nonequilibrium behavior where both nematic and magnetic spin waves were generated. We characterized the spatiotemporal evolution through two particle correlations between atoms in each pair of spin states. These revealed dramatic differences between the dynamics of the spin correlations and those of the spin populations.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.