Abstract

We investigate a zero-temperature itinerant antiferromagnetic transition where the fermions possess a d-wave gap. This problem pertains to both the nodal liquid insulating phase and the d-wave superconducting phase of the underdoped cuprates. We find that a non-trivial quantum phase transition exists, and that the quantum critical point is dominated by a long-ranged interaction (|x-y|-2d) of the Néel order parameter, which is induced by the Dirac-like fermions near gap nodes. We formulate a Ginzburg–Landau functional and estimate the critical exponents via the large-n expansion method.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.