Abstract

We report on specific heat and neutron scattering measurements performed for Sr 14- x Ca x Cu 24 O 41 single crystals. The specific heat data of Sr 2.5 Ca 11.5 Cu 24 O 41 showed a sharp phase transition at T N ≈2.1 K, indicating the possible onset of a long-range order. Specific heat measurements under magnetic fields also revealed that this phase transition is not due to charge ordering or structural phase transition but to magnetic ordering. In the neutron scattering experiments, we observed several Bragg peaks, corresponding to the magnetic ordering observed in the specific heat measurements. Furthermore, we confirmed from polarized neutron scattering measurements that these Bragg peaks are undoubtedly magnetic in origin. Considering both the nuclear magnetic resonance and neutron scattering data, a possible magnetic structure on the chain and ladder sites has been proposed. In this system, the singlet state and antiferromagnetic order induced by appropriate hole-doping coexist at ambient pressure and ...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.