Abstract
In this paper we report low-temperature magnetic properties of the rare-earth perovskite material YbAlO$_3$. Results of elastic and inelastic neutron scattering experiment, magnetization measurements along with the crystalline electrical field (CEF) calculations suggest that the ground state of Yb moments is a strongly anisotropic Kramers doublet, and the moments are confined in the $ab$-plane, pointing at an angle of $\varphi = \pm 23.5^{\circ}$ to the $a$-axis. With temperature decreasing below $T_{\rm N}=0.88$ K, Yb moments order into the coplanar, but non-collinear antiferromagnetic (AFM) structure $AxGy$, where the moments are pointed along their easy-axes. In addition, we highlight the importance of the dipole-dipole interaction, which selects the type of magnetic ordering and may be crucial for understanding magnetic properties of other rare-earth orthorhombic perovskites. Further analysis of the broad diffuse neutron scattering shows that one-dimensional interaction along the $c$-axis is dominant, and suggests YbAlO$_3$ as a new member of one dimensional quantum magnets.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.