Abstract

Spin-waves in antiferromagnets hold the prospects for the development of faster, less power-hungry electronics and promising physics based on spin superfluids and coherent magnon condensates. For both these perspectives, addressing electrically coherent antiferromagnetic spin-waves is of importance, a prerequisite that has been so far elusive, because, unlike ferromagnets, antiferromagnets couple weakly to radiofrequency fields. Here, we demonstrate the detection of ultra-fast nonreciprocal spin-waves in the dipolar exchange regime of a canted antiferromagnet using both inductive and spintronic transducers. Using time-of-flight spin-wave spectroscopy on hematite (α-Fe2O3), we find that the magnon wave packets can propagate as fast as 20 kilometers/second for reciprocal bulk spin-wave modes and up to 6 kilometers/second for surface spin-waves propagating parallel to the antiferromagnetic Néel vector. We lastly achieve efficient electrical detection of nonreciprocal spin-wave transport using nonlocal inverse spin-Hall effects. The electrical detection of coherent nonreciprocal antiferromagnetic spin-waves paves the way for the development of antiferromagnetic and altermagnet-based magnonic devices.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call