Abstract

Motivated by recent experimental studies on superconductivity found in nickelate-based materials, we study the temperature dependence of the spin correlation and the superconducting pairing interaction within an effective two-band Hubbard model by the quantum Monte Carlo method. Based on parameters extracted from first-principles calculations, our intensive numerical results reveal that the pairing with a $d_{xy}$-wave symmetry firmly dominates over other pairings at low temperature, which is mainly determined by the Ni 3$d$ orbital. It is also found that the effective pairing interaction is enhanced as the on-site interaction increases, demonstrating that the superconductivity is driven by strong electron-electron correlation. Even though the $(\pi,\pi)$ antiferromagnetic correlation could be enhanced by electronic interaction, there is no evidence for long-range antiferromagnetic order exhibited in nickelate-based superconductors. Moreover, our results offer possible evidence that the pure electron correlation may not account for the charge density wave state observed in nickelates.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.