Abstract
Replicating neural responses observed in biological systems using artificial neural networks holds significant promise in the fields of medicine and engineering. In this study, we employ ultra-fast artificial neurons based on antiferromagnetic (AFM) spin Hall oscillators to emulate the biological withdrawal reflex responsible for self-preservation against noxious stimuli, such as pain or temperature. As a result of utilizing the dynamics of AFM neurons, we are able to construct an artificial neural network that can mimic the functionality and organization of the biological neural network responsible for this reflex. The unique features of AFM neurons, such as inhibition that stems from an effective AFM inertia, allow for the creation of biologically realistic neural network components, like the interneurons in the spinal cord and antagonist motor neurons. To showcase the effectiveness of AFM neuron modeling, we conduct simulations of various scenarios that define the withdrawal reflex, including responses to both weak and strong sensory stimuli, as well as voluntary suppression of the reflex.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.