Abstract

The emergence of exchange bias and coercivity enhancement has been investigated in epitaxial CoO/Fe films with varied antiferromagnet (AF) thicknesses, even smaller than the critical value where the frozen CoO spins are detectable. Vector magnetometry and first-order reversal curve (FORC) measurements reveal different CoO thickness dependence of the exchange bias and coercivity enhancement, including the evolution of magnetization reversal from a high coercivity, low bias phase due to rotatable CoO moments to a high bias, low coercivity phase due to frozen CoO moments. The AF domain state is found to be metastable, which can be reoriented by external and exchange fields prior to the appearance of frozen spins, pointing to a generic origin of the training effect. Monte Carlo simulations show that the AF anisotropy energy barrier and the rotatable spins induced by magnetic field and exchange interaction at the interface are responsible for the observed effects.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.