Abstract

To study the blast resistance and damage rule of ultra-high toughness cementitious composites (UHTCC) subjected to blast by embedded explosives, blast resistance tests of embedded explosives were carried out on UHTCC and high-strength concrete (HSC) with different embedded depths of explosives. The damage patterns of the targets of the two materials were obtained. Using the test results of contact explosion, the blast resistance parameters of the above two materials were calculated. The test results show that UHTCC has better blast resistance than high-strength concrete under the same test conditions. To further explore the influence of compressive strength, tensile strength and tensile toughness on the blast resistance of UHTCC targets to embedded explosives, the improved K&C model was used to numerically simulate the UHTCC target subjected to blast by explosives with an embedded depth of 40 mm. The simulation results were basically consistent with the experimental results. According to the results of numerical simulation, the rule that the attenuation speed of the explosion shock wave along the radial direction of target was greater than that along the axial direction was obtained, which verified the validity of the model. Then, by adjusting the parameters related to the compressive strength, tensile strength and tensile toughness in the modified K&C model, the damage patterns of the UHTCC targets with different compressive and tensile strengths and tensile toughness were predicted. It is found that enhancing the toughness of UHTCC can effectively prevent the target from undergoing overall damage, increasing the tensile strength of UHTCC can reduce the cratering diameter of the blasting surface, and increasing the compressive strength of the material has no obvious effect on reducing the cratering size. These studies can provide a basis for the application of UHTCC materials in protection engineering.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.