Abstract

In fish, exposure to estrogen or estrogen-mimicking chemicals (xenoestrogens) during a critical period of development can irreversibly invert sex differentiation. In medaka, a male-to-female reversal upon exposure to a xenoestrogen is accompanied by an increase in brain aromatase expression and activity. However, whether this increase is the direct cause of sex reversal is unknown. In this study we further examined the role brain aromatase plays in genesis of developmental abnormalities in response to endocrine-disrupting chemicals (EDCs). Further, the effects of a mixture of apparent antagonistic environmentally relevant EDCs on development were examined to determine if their combined actions could lessen each other’s impacts. To this end, hatchling medaka were subjected in a 2-week flow-through immersion exposure to an estrogen mimic [dichlorodiphenyltrichloroethane (o,p′-DDT)] and to pharmaceutical [fadrozole (FAD)] and environmental aromatase inhibitors [tributyltin (TBT)] alone and in combination. Brain aromatase expression and enzyme activity were measured on exposure days 5, 9, and 14 by real-time reverse-transcriptase polymerase chain reaction and tritiated water release assay, respectively. We recorded sex reversals at sexual maturity by examining the phenotypic and genotypic sex of d-rR–strain medaka. Results indicate that FAD and TBT inhibit aromatase activity in o,p′-DDT–treated fish but do not prevent feminization, indicating that increased brain aromatase activity is not critical to EDC-induced male-to-female sex inversion. The observation that estradiol biosynthesis inhibitors do not block the effect of the xenoestrogen suggests that in the environment, exposure to seemingly antagonistic EDCs does not necessarily lessen the harmful impacts of these compounds.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.