Abstract

Drug design technology based upon DNA stereochemistry and now supplemented by computer modeling was used to design a novel compound to inhibit estrogen-induced tumor cell growth. A known compound 3-phenylacetylamino-2,6-piperidinedione (PP) was accommodated in partially unwound DNA in a manner consistent with criteria for antiestrogens. Examination of the PP-DNA complex revealed that substitution of a hydroxyl group at the para position ( p-OH-PP) would provide a stereospecific hydrogen bond and a substantial increase in fit as assessed by energy calculations. The antiestrogen tamoxifen could also be accommodated within the site; analogous substitution of a hydroxyl at the 4 position resulted in a better fitting molecule. 4-Hydroxytamoxifen is a more potent antiestrogen than tamoxifen. Synthesis and subsequent evaluation of p-OH-PP as an inhibitor of estrogen stimulated MCF-7 (E3) human breast cancer cell growth demonstrated that p-OH-PP was more active than both PP and its hydrolysis product phenylacetylglutamine. As predicted, the order of fit into DNA correlated with the relative ability to inhibit estrogen-induced growth of tumor cells suggesting that the evolving drug design technology will be valuable in developing new drugs for breast cancer.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.