Abstract

The estrogen responsive human breast cancer MCF-7 cell culture was examined for its response to 2-hydroxyestrone a principal metabolite of estradiol. Addition of 2-hydroxyestrone to the cell cultures in concentration of 10(-9) - 10(-6) M had no effect on cell growth and proliferation because of rapid O-methylation of the catechol estrogen by catechol O-methyltransferase which is highly active in these cells. In the presence of quinalizarin, a potent catechol O-methyltransferase inhibitor which reduces the O-methylation of the steroid, 10(-7) M and 10(-8) M 2-hydroxyestrone markedly suppresses the growth and proliferation of the cells. The tumor cell growth-inhibitory action of the catechol estrogen was neutralized by the presence of 10(-9) M estradiol. The catechol estrogen inhibition of cell growth is not observed in the estrogen receptor-negative human breast cancer cell lines MDA-MB-231 and MDA-MB-330 providing evidence that the inhibition is specific and is estrogen receptor-mediated. In contrast, the 16 alpha-hydroxylated metabolites of estradiol, estriol and 16 alpha-hydroxyestrone, are effective stimulators of MCF-7 cell proliferation with the latter exhibiting potency in excess of that expected from its estrogen receptor affinity. The present results represent the first observation of a specific receptor-mediated antiestrogenic action of 2-hydroxyestrone and suggest that the physiological regulation of the agonist activity of the primary estrogen may involve in situ generation of catechol estrogen.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.