Abstract
More than 15 million out of 70 million patients worldwide do not respond to available antiepilepticus drugs (AEDs). With the emergence of nanomedicine, nanomaterials are increasingly being used to treat many diseases. Here, we report that tetrahedral framework nucleic acid (tFNA), an assembled nucleic acid nanoparticle, showed an excellent ability to the cross blood-brain barrier (BBB) to inhibit M1 microglial activation and A1 reactive astrogliosis in the hippocampus of mice after status epilepticus. Furthermore, tFNA inhibited the downregulation of glutamine synthetase by alleviating oxidative stress in reactive astrocytes and subsequently reduced glutamate accumulation and glutamate-mediated neuronal hyperexcitability. Meanwhile, tFNA promotes α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPAR) internalization in the postsynaptic membrane by regulating AMPAR endocytosis, which contributed to reduced calcium influx and ultimately reduced hyperexcitability and spontaneous epilepticus spike frequencies. These findings demonstrated tFNA as a potential AED and that nucleic acid material may be a new direction for the treatment of epilepsy.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.