Abstract

Seizures cause inflammation of the central nervous system. The extent of the inflammation is related to the severity and recurrence of the seizures. Cell surface receptors are stimulated by stimulators such as kainic acid (KA), which causes intracellular mitogen-activated protein kinase (MAPK) signal pathway transmission to coordinate a response. It is known that Uncaria rhynchophylla (UR) and rhynchophylline (RP) have anticonvulsive effects, although the mechanisms remain unclear. Therefore, the purpose of this study is to develop a novel strategy for treating epilepsy by investigating how UR and RP initiate their anticonvulsive mechanisms. Sprague-Dawley rats were administered KA (12 mg/kg, i.p.) to induce seizure before being sacrificed. The brain was removed 3 h after KA administration. The results indicate that pretreatment with UR (1.0 g/kg), RP (0.25 mg/kg), and valproic acid (VA, 250 mg/kg) for 3 d could reduce epileptic seizures and could also reduce the expression of c-Jun aminoterminal kinase phosphorylation (JNKp) of MAPK signal pathways in the cerebral cortex and hippocampus brain tissues. Proinflammatory cytokines interleukin (IL)-1β, IL-6, and tumor necrosis factor-α remain unchanged, indicating that the anticonvulsive effect of UR and RP is initially involved in the JNKp MAPK signal pathway during the KA-induced acute seizure period.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.