Abstract

1. The kinetics and metabolism of milacemide have been studied in an animal model which allows the simultaneous investigation of the temporal inter-relationships of drugs and metabolites in blood (pharmacokinetics) and cerebrospinal fluid (CSF, neuropharmacokinetics) in individual freely moving rats. 2. Milacemide dose-dependently increased CSF glycine and glycinamide (intermediary metabolite) concentrations. This confirms that milacemide is a CNS glycine prodrug. 3. Pretreatment with L-deprenyl (2 mg kg-1), a specific inhibitor of monoamine oxidase type B (MAO-B), almost completely prevented the formation of glycinamide and increased milacemide accumulation in CSF. Tmax and t1/2 were significantly increased and Cmax and AUC values were decreased for glycinamide compared to controls. Pretreatment with clorgyline (5 mg kg-1), a specific inhibitor of MAO-type A, only moderately decreased glycinamide Cmax and AUC values. 4. After milacemide administration (100, 200 and 400 mg kg-1, i.p.) serum and CSF milacemide concentrations rose linearly and dose-dependently. Serum glycinamide concentrations exhibited small dose-dependent rises but these were not linearly related. In contrast, CSF glycinamide concentrations rose linearly and dose-dependently with Cmax values 2.5, 3.2 and 4.1 times greater than the corresponding values for serum glycinamide after giving 100, 200 and 400 mg kg-1 respectively of milacemide. 5. Serum glycine concentrations were unaffected but CSF concentrations increased dose-dependently and these were significant at the higher milacemide doses (200 and 400 mg kg-1). Animals given 400 mg kg-1 milacemide had glycine values which were still significantly elevated 7 h later. 6. In conclusion, serum milacemide rapidly enters and equilibrates with the CNS compartment where it is metabolised primarily by MAO-B to glycinamide and finally to glycine. Metabolism in the peripheral compartment is negligible.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.