Abstract
For a given absorbing Markov chain X* on a finite state space, a chain X is a sharp antidual of X* if the fastest strong stationary time (FSST) of X is equal, in distribution, to the absorption time of X*. In this paper, we show a systematic way of finding such an antidual based on some partial ordering of the state space. We use a theory of strong stationary duality developed recently for Möbius monotone Markov chains. We give several sharp antidual chains for Markov chain corresponding to a generalized coupon collector problem. As a consequence – utilizing known results on the limiting distribution of the absorption time – we indicate separation cutoffs (with their window sizes) in several chains. We also present a chain which (under some conditions) has a prescribed stationary distribution and its FSST is distributed as a prescribed mixture of sums of geometric random variables.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.