Abstract

To determine the effects of acute blood gas derangements on renal water and solute excretion and vasopressin secretion, six unanesthetized mongrel dogs were studied during 1) combined acute hypoxemia and hypercapnic acidosis [arterial O2 partial pressure (PaO2) 36 +/- 1 Torr, arterial CO2 partial pressure (PaCO2) 54 +/- 2 Torr, pH 7.18 +/- 0.01], 2) acute hypoxemia (PaO2 33 +/- 2 Torr, PaCO2 33 +/- 1 Torr, pH 7.34 +/- 0.01), and 3) acute hypercapnic acidosis (PaO2 83 +/- 3 Torr, PaCO2 53 +/- 1 Torr, pH 7.19 +/- 0.02). Combined acute hypoxemia and hypercapnic acidosis increased (P less than 0.05) mean arterial pressure, but renal hemodynamic function deteriorated with decreased (P less than 0.05) glomerular filtration rate and increased (P less than 0.05) renal vascular resistance. Moreover free water clearance became more negative (P less than 0.05) and urine osmolality increased (P less than 0.05). During acute hypoxemia or acute hypercapnic acidosis alone, mean arterial pressure and renal hemodynamic function were unchanged but free water clearance became more negative (P less than 0.05). During acute hypoxemia, urine osmolality increased (P less than 0.05) comparably with values observed during combined acute hypoxemia and hypercapnic acidosis. Plasma vasopressin concentrations increased profoundly (P less than 0.05) during combined hypoxemia and hypercapnic acidosis and during acute hypoxemia alone and were significantly elevated (P less than 0.05) above the increased plasma vasopressin concentrations observed during acute hypercapnic acidosis. We conclude that acute hypoxemia and hypercapnic acidosis result in impairment of renal water excretion, probably mediated through vasopressin secretion.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.