Abstract

Diabetes mellitus (DM) is a common metabolic disorder which arises due to the improper carbohydrate metabolism, decreased secretion/activity of insulin, and genetic abnormalities, which result in the increased blood glucose level generally known as hyperglycemia. Diabetes holds an increased global prevalence in each year and is responsible for increased morbidity and mortality rates. Hence, the current investigation focusses to assess the antidiabetic potential of sinigrin on diabetic animal model through the suppression of inflammation. Diabetes was initiated to the animals via administering streptozotocin (STZ) and supplemented with the sinigrin at 25- and 50-mg/kg dose via oral route. The diabetic rats demonstrated the elevated glucose, food and water intake, kidney and liver weights, and reduced bodyweight and depleted insulin status. The sinigrin treatment remarkably improved and modulated these changes in diabetic animals. Additionally, the sinigrin supplementation also modulated the changes in glucose-6-phosphatase; fructose 1,6-bisphosphatase; AST; ALT; creatinine; and inflammatory mediators in the STZ-provoked diabetic animals. The levels of hexokinase, protein, and antioxidants also improved by the sinigrin treatment. The histological investigations of pancreas also witnessed the therapeutic actions of sinigrin, which is supported by the findings of biochemical examinations. Therefore, it was clear that the sinigrin supplementation displayed remarkable antidiabetic effect on STZ-initiated diabetic animals via modulating inflammation and other biochemical changes, which recommends that sinigrin could be a talented candidate for diabetes management in the future.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call