Abstract

Diabetic mellitus (DM) is a chronic disorder, and type 2 DM (T2DM) is the most prevalent among all categories (nearly 90%) across the globe every year. With the availability of potential drugs, the prevalence rate has remained uncontrollable, while natural resources showed a promising potency, and exploring such potential candidates at the preclinical stage is essential. An extensive literature search selected 89 marine and plant-derived indole derivatives with anti-inflammatory, antioxidant, lipid-lowering, etc., activities. However, as we know, drugs have not been able to convert from ’lead’ to 'mainstream' due to inadequate drug-ability profiles, as our systematic investigation proved and selected herdmanine_A (HERD_A) and penerpene_D (PENE_D) as the most potential antidiabetic candidates from the library of indole derivatives. Based on our previous network pharmacology study, we selected three new target enzymes: Acetyl-CoA carboxylase 2 (ACACB; PDB ID: 3JRX), cyclin-dependent kinase 4 (CDK4; PDB ID: 3G33), and alpha serine/threonine-protein kinase 1 (AKT1; PDB ID: 3O96) to assess the antidiabetic potency of selected indole derivatives through binding energy or docking score. To conduct molecular docking studies with these enzymes, we used the PyRx-AutoDock platform. Furthermore, molecular dynamic simulation at 100 ns, physicochemical analysis, pharmacokinetics, toxicity assessment, and drug-likeness evaluation suggested that HERD_A and penerpene PENE_D were the most potent inhibitors against AKT1 compared to koenimbine (most potential based on the recorded IC50 value) and murrayakonine_A (most potential based on the docking score). In summary, HERD_A and/or PENE_D have the potential to be used as alternative therapeutic agent for the treatment of diabetes after some pharmacological investigation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call