Abstract

Metformin, an antidiabetic drug, shows some potent antitumor effects. However, the molecular mechanism of metformin in tumor suppression has not been clarified. Here, we provided evidence using invitro and invivo data that metformin inhibited mevalonate pathway by downregulation of 3-hydroxy-3-methylglutaryl-CoA synthase 1 (HMGCS1), a key enzyme in this pathway. Our results further demonstrated that metformin downregulated HMGCS1 expression through inhibition of transcription factor nuclear factor E2-related factor 2. In addition, we determined that HMGCS1 was highly expressed in human liver and lung cancer tissues and associated with lower survival rates. In summary, our study indicated that metformin suppresses tumorigenesis through inhibition of the nuclear factor E2-related factor 2-HMGCS1 axis, which might be a potential target in cancer prevention and treatment.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.