Abstract

Second generation antipsychotic drugs are routinely used as treatment for psychotic disorders. Many of these compounds, including olanzapine, cause metabolic side-effects such as impaired glucose tolerance and insulin resistance. Individual antidiabetic drugs can help control elevated glucose levels in patients treated with antipsychotics, but the effects of combining antidiabetics, which routinely occurs with Type 2 diabetes mellitus patients, have never been studied. Presently, we compared the effects of the three different antidiabetics metformin (500mg/kg, p.o.), rosiglitazone (30mg/kg, p.o.) and glyburide (10mg/kg, p.o.) on metabolic dysregulation in adult female rats treated acutely with olanzapine. In addition, dual combinations of each of these antidiabetics were compared head-to-head against each other and the individual drugs. The animals received two daily treatments with antidiabetics and were then treated acutely with olanzapine (10mg/kg, i.p.). Fasting glucose and insulin levels were measured, followed by a 2h glucose tolerance test. Olanzapine caused a large and highly significant glucose intolerance compared to vehicle treated rats. Rosiglitazone decreased glucose levels non-significantly, while both metformin and glyburide significantly decreased glucose levels compared to olanzapine-only treated animals. For antidiabetic dual-drug combinations, the rosiglitazone-metformin group showed an unexpected increase in glucose levels compared to all of the single antidiabetic drugs. However, both the metformin-glyburide and rosiglitazone-glyburide groups showed significantly greater reductions in glucose levels following olanzapine than with single drug treatment alone for metformin or rosiglitazone, bringing glucose levels down to values equivalent to vehicle-only treated animals. These findings indicate that further study of antidiabetic dual-drug combinations in patients treated with antipsychotic drugs is warranted.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.