Abstract

It has been reported that the selective inhibitors of 11β-hydroxysteroid dehydrogenase type 1 (11β-HSD1) have considerable potential for treating type 2 diabetes mellitus, metabolic syndrome and inflammation. In the present study, we investigated the anti-diabetic and anti-inflammatory effects of N-(5-carbamoyladamantan-2-yl)-3-((2-fluorophenyl) sulfonyl)thiazolidine-2-carboxamide (KR-67105), a novel 11β-HSD1 inhibitor, in diabetic mice model and preadipocyte model. KR-67105 concentration dependently inhibited 11β-HSD1 activity in human and mouse 11β-HSD1 overexpressing cells and mouse 3T3-L1 adipocytes. Furthermore, KR-67105 concentration-dependently inhibited 11β-HSD1 activity in the ex vivo assay of C57BL/6 mice. In the study with diet-induced obese (DIO) mice, the administration of KR-67105 (100mg/kg/day, orally for 28 days) improved the glucose tolerance and insulin sensitivity as determined by the oral glucose tolerance test and the insulin tolerance test. Anti-diabetic effect by KR-67105 was associated with the suppression of diabetic related genes expression in liver and fat. Furthermore, KR-67105 suppressed 11β-HSD1 activity in liver and fat of diabetic mice, but showed no effect on adrenal grand weight/body weight ratio and plasma corticosterone concentration in diabetic mice. In 3T3-L1 preadipocytes, cortisone induced the mRNA of inflammatory cytokines and 11β-HSD1 and reactive oxygen species formation. This effect was abolished by co-incubation with KR-67105 in a concentration-dependent manner. Moreover, KR-67105 attenuated cortisone induced iNOS expression and phosphorylation of NF-κB p65, p38 MAPK, and ERK1/2 in preadipocytes. Taken together, it is concluded that a selective 11β-HSD1 inhibitor, KR-67105, may provide a new therapeutic window in the prevention and treatment of type 2 diabetes with chronic inflammation without toxicity.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.