Abstract

The General Antiparticle Spectrometer (GAPS) exploits low energy antideuterons produced in neutralino-neutralino annihilations as an indirect dark matter (DM) signature that is effectively free from background. When an antiparticle is captured by a target material, it forms an exotic atom in an excited state which quickly decays by emitting X-rays of precisely defined energy and a correlated pion signature from nuclear annihilation. We have successfully demonstrated the GAPS method in an accelerator environment and are currently planning a prototype flight from Japan for 2009. This will lead to a long duration balloon (LDB) mission that will complement existing and planned direct DM searches as well as other indirect techniques, probing a different, and often unique, region of parameter space in a variety of proposed DM models. Planes of coarsely pixellated Si(Li) detectors form the heart of the GAPS flight detector, providing both high X-ray energy resolution and good particle tracking. We will describe the proto-flight mission that will verify the performance of our Si(Li) detectors and cooling system in a flight-like configuration. We also will outline the LDB science payload design.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.