Abstract
Antidepressant properties of melatonin and atorvastatin have been reported by clinical and experimental studies. Since both melatonin and atorvastatin possess antioxidant properties and considering the involvement of oxidative stress factors in depression, the aim of the present investigation was to study the possible role of oxidative stress factors in the antidepressant- like effect of melatonin and atorvastatin combination in mice forced swimming test. Following the induction of restraint stress, mice were randomly divided into eight groups including the non-stressed and stressed vehicle-treated groups, melatonin- and atorvastatintreated groups, a combination of melatonin and atorvastatin-treated group, and fluoxetineadministrated group. The open field test (OFT) and forced swimming test (FST) were carried out, and the hippocampus and prefrontal cortex were removed for the measurement of oxidative stress factors. Induction of restraint stress increased the immobility time in FST, and melatonin (10 mg/kg) significantly reduced it. Atorvastatin at both doses of 1 and 10 mg/kg could not alter the immobility time, significantly. Co-administration of melatonin and atorvastatin (10 mg/kg) exerted a significant antidepressant-like response and decreased the immobility time compared with melatonin or atorvastatin (10 mg/kg), alone. Induction of restraint stress elevated the malondialdehyde (MDA) levels in mice's hippocampus, while pretreatment of animals with atorvastatin (10 mg/kg) could reverse it. The co-administration of melatonin and atorvastatin (10 mg/kg) increased the cortical superoxide dismutase (SOD) activity compared with atorvastatin alone, but could not alter the catalase (CAT) activity. It is concluded that atorvastatin might augment the antidepressant-like properties of melatonin in FST.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Central Nervous System Agents in Medicinal Chemistry
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.