Abstract
Catalpol is a major compound in Rehmanniae Radix with outstanding medicinal and nutritional values. Our previous studies have demonstrated catalpol's antidepressant effect, but its mechanisms remain unclear. This study aimed to explore the antidepressant mechanisms of catalpol via the phosphatidylinositol 3-kinase (PI3K)/protein kinase B (Akt)/nuclear factor E2-related factor 2(Nrf2)/heme oxygenase-1 (HO-1) pathway. Results demonstrated that chronic unpredictable mild stress (CUMS) for 5 consecutive weeks caused significant decreases in the sucrose preference and the horizontal and vertical scores of open-field test, as well as a significant increase in the swimming-immobility time of rats; catalpol administration significantly reversed the abnormality of these indicators. Further real-time fluorescent quantitative polymerase chain reaction and Western blotting results together showed that CUMS significantly downregulated the expression levels of hippocampal genes and proteins, including PI3K, Akt, Nrf2, HO-1, tropomyosin-related kinase B (TrkB), and brain-derived neurotrophic factor; catalpol administration significantly reversed the abnormal expression of these genes and proteins. CUMS also caused a significant decrease in the hippocampal superoxide dismutase, catalase, glutathione peroxidase, glutathione-s transferase, and reduced glutathione levels, as well as a significant increase in thiobarbituric acid reactive substances level in rats; catalpol administration significantly reversed the abnormality of these indicators. Taken together, this study confirmed for the first time that the antidepressant effect of catalpol on CUMS-induced depression involved the upregulation of the PI3K/Akt/Nrf2/HO-1 signaling pathway, thereby improving the hippocampal neurotrophic, neuroprotective, and antioxidant levels. The PI3K/Akt/Nrf2/HO-1 pathway-related molecules may serve as potential new biomarkers and candidate molecular targets for catalpol's antidepressant effects.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.