Abstract

The dopamine D2/D3 receptor agonist and alpha2 adrenergic receptor antagonist, piribedil, is used clinically as monotherapy and as an adjunct to L-3,4-dihydroxyphenylalanine in the treatment of Parkinson's disease. As it appears to improve mood, we examined its actions in rodent models of antidepressant properties, in comparison with the prototypical anti-Parkinson agent, apomorphine, the D2/D3 receptor agonist, quinpirole, and the antidepressants, imipramine and fluvoxamine. In the mouse forced-swim test, acute administration of imipramine, fluvoxamine, apomorphine or quinpirole decreased immobility time, actions dose dependently mimicked by piribedil (2.5-10.0 mg/kg, subcutaneously). In rats, acute and subchronic administration of piribedil similarly reduced immobility (0.63-10.0 mg/kg, subcutaneously) and apomorphine, quinpirole and imipramine were also active in this test, whereas fluvoxamine was inactive. Both in mice and in rats, the D2/D3 receptor antagonist, raclopride, and the D2 receptor antagonist, L741,626, dose dependently blocked the antidepressant properties of piribedil, whereas the selective D3 receptor antagonists, S33084 and SB277,011, were ineffective. In a chronic mild stress model in rats, piribedil (2.5-40.0 mg/kg, subcutaneously) restored sucrose intake in stressed animals exerting its actions more rapidly (by week 1) than imipramine. Imipramine, fluvoxamine, apomorphine, quinpirole and piribedil dose dependently (0.63-10.0 mg/kg, subcutaneously) suppressed aggressive and marble-burying behaviour in mice. In the latter procedure, raclopride and L741,626, but not S33084, attenuated the actions of piribedil. Over a dose range (0.63-10.0 mg/kg, subcutaneously) equivalent to those active in models of antidepressant activity, piribedil did not stimulate locomotor behaviour. In conclusion, principally via recruitment of D2 receptors, piribedil exerts robust and specific antidepressant-like actions in diverse rodent models.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.