Abstract

A number of studies have linked abnormalities in the function of the serotonergic and noradrenergic systems to the pathophysiology of depression. It has been reported that selective serotonin reuptake inhibitors promote the expression of tryptophan hydroxylase (TPH), which is involved in the synthesis of serotonin. However, limited evidence of TPH alteration has been found in selective serotonin and noradrenaline reuptake inhibitors (SNRIs), and more key enzymes need to be investigated. The aim of the present study was to determine whether venlafaxine (VLX; a classical SNRI) regulates TPH and other key enzymes responsible for the synthesis and metabolism of monoaminergic transmitters in rats with chronic unpredictable stress (CUS). The present results suggested that CUS‑exposed rats exhibited decreased locomotor activity in the open‑field test and increased immobility time in the forced swim test, as compared with the controls. Pretreatment with VLX (20mg/kg) significantly increased locomotor activity and reduced immobility time in the CUS‑exposed rats. In addition, VLX (20mg/kg) treatment prevented the CUS‑induced reduction in tyrosine hydroxylase and TPH expression in the cortex and hippocampus. Furthermore, VLX alleviated the CUS‑induced oxidative stress in the serum, cortex and hippocampus. However, VLX administration did not have an effect on indoleamine‑2,3‑dioxygenase overexpression in the hippocampus. It was therefore concluded that the regulation of abnormalities in the synthesis and metabolism of monoaminergic transmitters may be associated with the antidepressant effects of VLX, suggesting that multimodal pharmacological treatments can efficiently treat depression.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call