Abstract

Why antidepressants vary in terms of efficacy is currently unclear. Despite the leadership of selective serotonin reuptake inhibitors (SSRIs) in the treatment of depression, the precise neurobiological mechanisms involved in their therapeutic action are poorly understood. A better knowledge of molecular interactions between monoaminergic system, pre- and post-synaptic partners, brain neuronal circuits and regions involved may help to overcome limitations of current treatments and identify new therapeutic targets. Intracerebral in vivo microdialysis (ICM) already provided important information about the brain mechanism of action of antidepressants first in anesthetized rats in the early 1990s, and since then in conscious wild-type or knock-out mice. The principle of ICM is based on the balance between release of neurotransmitters (e.g., monoamines) and reuptake by selective transporters [e.g., serotonin transporter for serotonin 5-hydroxytryptamine (5-HT)]. Complementary to electrophysiology, this technique reflects pre-synaptic monoamines release and intrasynaptic events corresponding to ≈80% of whole brain tissue content. The inhibitory role of serotonergic autoreceptors infers that they limit somatodendritic and nerve terminal 5-HT release. It has been proposed that activation of 5-HT1A and 5-HT1B receptor sub-types limits the antidepressant-like activity of SSRIs. This hypothesis is based partially on results obtained in ICM experiments performed in naïve, non-stressed rodents. The present review will first remind the principle and methodology of ICM performed in mice. The crucial need of developing animal models that display anxiety and depression-like behaviors, neurochemical and brain morphological phenotypes reminiscent of these mood disorders in humans, will be underlined. Recently developed genetic mouse models have been generated to independently manipulate 5-HT1A auto and heteroreceptors and ICM helped to clarify the role of the pre-synaptic component, i.e., by measuring extracellular levels of neurotransmitters in serotonergic nerve terminal regions and raphe nuclei. Finally, we will summarize main advantages of using ICM in mice through recent examples obtained in knock-outs (drug infusion through the ICM probe allows the search of a correlation between changes in extracellular neurotransmitter levels and antidepressant-like activity) or alternatives (infusion of a small-interfering RNA suppressing receptor functions in the mouse brain). We will also focus this review on post-synaptic components such as brain-derived neurotrophic factor in adult hippocampus that plays a crucial role in the neurogenic and anxiolytic/antidepressant-like activity of chronic SSRI treatment. Limitations of ICM will also be considered.

Highlights

  • Most of the antidepressants such as selective serotonin reuptake inhibitors (SSRIs) act as indirect agonists of monoamine receptors

  • As an example of the relevance of the zero net flux method of quantitative microdialysis, we have recently shown the critical impact of a neuropeptide, brain-derived neurotrophic factor (BDNF) on serotonergic neurotransmission under basal conditions and following SSRI treatment

  • These results suggests that the beneficial anxiolytic/antidepressant-like effects of chronic SSRI treatment depend on 5-HT1A autoreceptor internalization, but do not require a sustained increase in extracellular 5-HT levels in a territory of 5-HT projection such as hippocampus

Read more

Summary

INTRODUCTION

Most of the antidepressants such as selective serotonin reuptake inhibitors (SSRIs) act as indirect agonists of monoamine receptors. Richardson-Jones et al (2010) developed a new strategy to manipulate pre-synaptic 5-HT1A autoreceptors in serotonergic raphe neurons without affecting 5-HT1A heteroreceptors, generating mice with higher (1A-High) or lower (1A-Low) autoreceptor levels In this latter line, it was possible to examine the brain 5-HT system by partially turning off 5-HT1A autoreceptors at a specific time point and to study correlations between changes in 5-HT transmission and antidepressant-like activity of SSRIs in various behavioral tests. It was possible to examine the brain 5-HT system by partially turning off 5-HT1A autoreceptors at a specific time point and to study correlations between changes in 5-HT transmission and antidepressant-like activity of SSRIs in various behavioral tests This strategy robustly affects raphe firing rates, but has no effect on either basal extracellular 5-HT levels as measured by in vivo microdialysis in the frontal cortex and ventral hippocampus. Statistical analysis was carried out using a two-way ANOVA followed by Fisher’s PLSD post hoc t -test

LIMITATIONS
Findings
Some limitations of using microdialysis in WT and KO mice

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.