Abstract

This paper presents the electromagnetic interference (EMI) shielding and anti-corrosion characteristics of polyaniline (PANI) coated copper oxide (CuO) nanocomposites. PANI/CuO composites were characterized by X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FT-IR), scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy, transmission electron microscopy (TEM), Raman spectroscopy, and thermogravimetry analysis (TGA). Frequency-dependent (AC) conductivity, and dielectric attributes of the composites were analyzed at room temperature in the frequency range of 10 Hz–1 MHz. The AC conductivity and dielectric properties showed tunability with varying concentrations (weight percentage) of CuO particles in PANI. The EMI shielding measurements were carried out in the Ku band (12–18 GHz) frequency range of practical relevance. The results show that, PANI/CuO composites exhibited high electromagnetic interference shielding efficiency due to high surface area and the presence of heterogeneous phase components in their moieties. The anticorrosion behavior of PANI/CuO on mild steel (MS) surface in 5 M HCl corrosive solution was performed by using the atomic absorption spectroscopy (AAS), Tafel plot, and AC impedance spectroscopy techniques. Surface studies were performed by using scanning electron microscopy technique. AAS results indicated that, MS corrosion mitigating efficiency of PANI/CuO nanocomposite is concentration-dependent and protection efficiency is improved with a boost in the PANI/CuO nanocomposite amount. Tafel plots confirmed that, PANI/CuO composite acts as an anodic type of inhibition system. The effect of the protective barrier invisible layer at the surface of the MS was analyzed by Nyquist plot studies and SEM topography showed the mitigation effect of the PANI/CuO system on the MS surface. Finally, our results show that, anticorrosive PANI/CuO can be a good choice for broadband microwave attenuation and EMI shielding applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.