Abstract
The corrosion inhibition performance of novel synthesized thiosemicarbazide derivative namely, 2-isonicotinoyl-N-phenylhydrazinecarbothioamide (IPC) on the mild steel coupon surface in 1[Formula: see text]M hydrochloric acid solution is investigated by weight loss measurements. The adsorption parameters of the IPC on the mild steel coupon surface have been evaluated and the surface morphology of the tested mild steel is studied by scanning electron microscope (SEM) technique. The results of this study demonstrate a significant inhibitor (IPC) for mild steel and showed the highest inhibitive efficiency of 96.3% at 5[Formula: see text]mM as optimum studied inhibitor concentration. The adsorption of IPC molecules on a mild steel coupon surface is obeyed completely by the model of Langmuir adsorption isotherms. SEM has been applied to analyse the layer of IPC molecules which formed on a mild steel coupon surface as a protective layer. The inhibition efficiency (IE) of IPC from weight loss techniques and SEM analysis was harmonic with each other. The Density Functional Theory (DFT) computations have been applied to evaluate the adsorption sites of the IPC molecules and the quantum chemical calculations correlation of IPC molecules with methodological results are discussed. The energy of the highest occupied molecular orbital (EHOMO) shows a significant tendency of the IPC molecules to donate pairs of electrons to the iron atoms on the surface of mild steel. The energy of the lowest unoccupied molecular orbital (ELUMO) for IPS molecules reveals a high tendency to accept electrons from iron atoms on the surface of mild steel.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.