Abstract
Epilepsy is an important problem in neurological disorders. The common features of all types of epilepsy are the synchronized and uncontrolled discharges of nerve cell assemblies. Recent studies claimed that gap junctions have a critical role in epileptic neuronal events. The aim of present study is to investigate the effects of connexin36 (Cx36) channel blocker quinine on penicillin-induced experimental epilepsy. For this purpose, 4 months old male Wistar rats were used in the present study. Permanent screw electrodes allowing EEG monitoring from conscious animals and permanent cannula providing the administration of the substances to the brain ventricle were placed into the cranium of rats under general anesthesia. At the end of the postoperative recovery period, epileptiform activity was generated by injecting 300 IU crystallized penicillin through the ventricular cannula. When the epileptiform activity, monitored from a digital recording system, reached maximal frequency and amplitude, quinine (200, 400 or 1000 nmol) was administered similar to penicillin. Effects of quinine on epileptiform activity were assessed by both electrophysiological and behavioral analysis. Quinine suppressed epileptiform activity by decreasing the amplitude and frequency of epileptiform spikes and by attenuating the epileptiform behavior. The outcomes of this study suggest that the blockade of Cx36 channels may contribute to the amelioration of epileptic activity.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.