Abstract

We sought to investigate the anticonvulsive and neuroprotective effect of a selective metabotropic glutamate receptor 8 (mGluR8) agonist (S)-3,4-dicarboxyphenylglycines (S-3,4-DCPG) on pilocarpine-induced status epilepticus (PISE) and subsequent loss of hilar neurons in the dentate gyrus after systemic (intravenous) or local (intracerebroventricular) administration. We compared the difference in granular cell responses after paired-pulse stimulation of the perforant pathway and the sensitivity to local injection of S-3,4-DCPG into the stratum granulosum in the control and mice at 2 months after PISE. We used intravenous, intracerebroventricular, or intrahippocampal administration of S-3,4-DCPG to mice with status epilepticus or temporal lobe epilepsy and neurophysiologic recording of somatic field excitatory postsynaptic potential (sfEPSP) and population spike (PS) of granular cells in response to perforant-pathway stimulation or S-3,4-DCPG treatment. Intracerebroventricular (1.91 micromol) but not systemic administration of S-3,4-DCPG (at doses of 12.5, 50, 100, 200, 400, 800, and 1,200 mg/kg) could control PISE with no neuroprotective effect. In epileptic mice, mGluR8-mediated inhibition of fEPSPs was reduced significantly in granular cell bodies. At doses ranging from 12.5 to 1,200 mg/kg, intravenous administration of S-3,4-DCPG may not be effective in controlling status epilepticus. Down-regulation of mGluR8 may be related to reduced S-3,4-DCPG-mediated inhibition and the subsequent occurrence of spontaneously recurrent seizures.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call