Abstract

The discovery that glutamate’s activity at the N-methyl- d-aspartate (NMDA) receptor is positively modulated by glycine and polyamines has led to a new pharmacological strategy that NMDA receptor-mediated events could be antagonized indirectly at the strychnine-insensitive glycine co-agonist site (glycine B receptor) and the polyamine modulatory site. Recently we demonstrated that ifenprodil and L-701,324 (7-chloro-4-hydroxy-3(3-phenoxy)phenyl-2(H)quinoline), polyamine and glycine B receptor antagonists, respectively, at subeffective doses markedly increased after-discharge threshold (ADT) when applied together in amygdala-kindled rats. Because ifenprodil and its derivative, eliprodil, exhibit different affinities for NMDA receptors composed of different subunits, our current question was whether a combination of eliprodil and the glycine B receptor antagonist, L-701,324, would produce a super-additive anticonvulsant action. In addition, we examined the combined treatment of eliprodil with a competitive NMDA receptor antagonist CGP 40116 ( d-(E)-2-amino-4-methyl-5-phosphono-3-pentenoic acid) in the kindling model. Eliprodil alone (10–40 mg/kg) had no consistent ADT-increasing activity. When eliprodil was combined with an ineffective dose of L-701,324 (2.5 mg/kg), a significant rise in ADT was observed. Likewise, other measures of seizure activity such as severity and duration were modestly but significantly reduced. With respect to behavioral impairments, no signs of synergistic interaction were observed after the drug combinations. On the other hand, no anticonvulsant effects were found when CGP 40116 was administered alone at doses of 1.25–5 mg/kg or CGP 40116 1.25 mg/kg combined with eliprodil 10 mg/kg. These data suggest that combination therapy with antagonists at the polyamine and glycine sites might potentially treat therapy-resistant complex partial seizures.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.