Abstract

The cystine/glutamate antiporter system could represent a new target for antiepileptogenic treatments due to its crucial roles in glutamate homeostasis and neuroinflammation. To demonstrate this, we compared epilepsy development and seizure susceptibility in xCT knockout mice (xCT-/- ) and in littermate controls (xCT+/+ ) in different chronic models of epilepsy. Mice were surgically implanted with electrodes in the basolateral amygdala and chronically stimulated to develop self-sustained status epilepticus (SSSE); continuous video-electroencephalography monitoring was performed for 28days after SE and hippocampal histopathology was assessed. Corneal kindling was induced by twice daily electrical stimulation at 6Hz and maintenance of the fully kindled state was evaluated. Next, messenger RNA (mRNA) and protein levels of xCT and of the proteins involved in the phosphoinositide 3-kinase (PI3K)/Akt/glycogen synthase kinase 3β (GSK-3β)/eukaryotic initiation factor 2α (eIF2α)/activating transcription factor 4 (ATF4) signaling pathway were measured at different time points during epileptogenesis in NMRI mice treated with pilocarpine. Finally, the anticonvulsant effect of sulfasalazine (SAS), a nonselective system inhibitor, was assessed against 6Hz-evoked seizures in pilocarpine-treated mice. In the SSSE model, xCT-/- mice displayed a significant delayed epileptogenesis, a reduced number of spontaneous recurrent seizures, and less pronounced astrocytic and microglial activation. Moreover, xCT-/- mice showed reduced seizure severity during 6Hz kindling development and a lower incidence of generalized seizures during the maintenance of the fully kindled state. In pilocarpine-treated mice, protein levels of the PI3K/Akt/GSK-3β/eIF2α/ATF4 pathway were increased during the chronic phase of the model, consistent with previous findings in the hippocampus of patients with epilepsy. Finally, repeated administration of SAS protected pilocarpine-treated mice against acute 6 Hz seizure induction, in contrast to sham controls, in which system is not activated. Inhibition of system could be an attractive target for the development of new therapies with a potential for disease modification in epilepsy.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call